Metal air supply valve
KNT-RML

Description

KNT air supply valves can be installed in the ceiling, on the wall or directly in the mouth of a ventilation duct using a dedicated RML mounting frame. They allow smooth adjustment of the air exhaust flow rate by rotating the disk closure in the centre. The air flow rate depends on the opening ratio, i.e. the distance between the disk closure distance and the round bezel, and it is set with a locknut. The carefully designed geometry of the valve guarantees low noise level as well as quick and easy installation. On the inside of the KNT valve, there is a deflector to control the air flow angle.

The standard air supply valves are supplied with a mounting frame (product code: KNT-RML).

Available materials — Product code examples
KNT-RML-... - galvanized steel sheet, powder-coated finish high-gloss RAL 9016

Product code example
Product code: KNT-RML - aaa

Ød ________

Technical specifications

<table>
<thead>
<tr>
<th>Dimensions (mm)</th>
<th>Ød (mm)</th>
<th>ØD (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>135</td>
<td>0.28</td>
</tr>
<tr>
<td>125</td>
<td>125</td>
<td>165</td>
<td>0.44</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
<td>205</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Sound pressure level, LA (dB(A))

<table>
<thead>
<tr>
<th>Dimensions (mm)</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>22</td>
<td>18</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>125</td>
<td>125</td>
<td>20</td>
<td>16</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
<td>18</td>
<td>14</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

tolerance 6 3 2 2 2 2 2 3
Metal air supply valve
KNT-RML

Technical specifications

The following performance parameters:
- Volumetric flow rate, \(q \) (l/s or m\(^3\)/h),
- Total pressure drop, \(P_t \) (Pa),
- Sound pressure level, \(L_A \) (dB(A)), can be read from the chart.

Pressure drop, \(P_t \)
The charts show the total pressure drop, \(P_t \) (Pa).

Sound pressure level, \(L_A \)
The charts show the sound pressure level, \(L_A \) (dB(A)).
The noise level is shown for the sound insulation level at 4 dB indoors, which corresponds to sound insulation performance in the reverberation zone at the room absorption level for 10 m\(^2\) according to SABINE’s formula.

Selection charts for air valves w/o deflectors

Selection charts for air valves with deflectors

The following performance parameters:
- Volumetric flow rate, \(q \) (l/s or m\(^3\)/h),
- Total pressure drop, \(P_t \) (Pa),
- Sound pressure level, \(L_A \) (dB(A)), can be read from the chart.

Pressure drop, \(P_t \)
The charts show the total pressure drop, \(P_t \) (Pa).

Sound pressure level, \(L_A \)
The charts show the sound pressure level, \(L_A \) (dB(A)).
The noise level is shown for the sound insulation level at 4 dB indoors, which corresponds to sound insulation performance in the reverberation zone at the room absorption level for 10 m\(^2\) according to SABINE’s formula.